# Bergenfield High School <br> Bergenfield, New Jersey 

# Mathematics Department Summer Course Work 

## in preparation for

## Plane Geometry

Completion of this summer work
is optional for the
2023-2024 school year.
$\qquad$

# Bergenfield Public Schools <br> Mathematics Department <br> 80 South Prospect Avenue <br> Bergenfield, New Jersey <br> (201) 387-3850 

June 2023

Dear Parents and Guardians:
Attached are the summer curriculum review materials for Geometry. This booklet was prepared by the Bergenfield High School Math department and contains topics that reflect content learned in prerequisite courses.

This is optional work that your child can complete over the summer to be better prepared for class in September.

Thank you for your cooperation.

Sincerely,

Jim Fasano

Principal

Steven Neff
Supervisor of Mathematics

## Solving Linear Equations

Solve each equation. Then check your solution.

1. $-18=-61+d$
2. $x-\frac{3}{5}=-\frac{7}{10}$
3. $\frac{2}{3} x-6=-10$
4. $\frac{x+4}{2}=17$
5. $-5 r=55$
6. $3 k-5=7 k-21$
7. $-\frac{v}{5}=-45$
8. $8 s+9=7 s+6$
9. $\frac{1}{2} x=80$
10. $7(x-3)=7$
11. $\triangle A B C$ is an equilateral triangle.

- Find x .
- Find the length of side $A B$.


12. The perimeter of rectangle PQRS is 40 cm .

- Find x .
- Find the area of PQRS.


13. The two line segments below have the same length. Find the length of each segment.

14. The perimeter of square JKLM is 64 units. Find the length of each side.


## Pythagorean Theorem



$$
a^{2}+b^{2}=c^{2}
$$

## Example:

Step 1: Set-up Equation

$$
5^{2}+12^{2}=c^{2}
$$

Step 2: Multiply

$$
25+144=c^{2}
$$

Step 3: Add

$$
169=c^{2}
$$

Step 4: Take square root of each side. $\quad \sqrt{169}=\sqrt{c^{2}}$
Step 5: Simplify square roots. $13=c$
15.

17.

16.

18.


## GRAPHING

## Instruction:

Plot each point on the graph below. Remember, coordinate pairs are labeled ( $\mathrm{x}, \mathrm{y}$ ). Label each point on the graph with the letter given.
19. $\mathrm{A}(3,4)$
21. $C(-4,2)$
20. $B(4,0)$
22. $D(-3,-1)$
23. $\mathrm{E}(0,7)$


Determine the coordinates for each point below:
24. Example. (2 ; 3)



$$
\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { midpoint }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Before using the slope or midpoint formula, you must label your $x_{1}, y_{1}, x_{2}$, and $y_{2}$.

Example: For the points $(0,1)$ and $(2,5)$, label your $x_{1}, y_{1}, x_{2}$, and $y_{2}$ so that you can use them in your slope or midpoint formula.

Step 1: Label one point as point 1 and the other as point 2.


Step 2: Label the x - and y -coordinates of point 1 as $x_{1}$ and $y_{1}$, respectively.
Then, label the x - and y -coordinates of point 2 as $x_{2}$ and $y_{2}$.


Example 1: Use the slope formula to find the slope of the line between $(0,1)$ and $(1,3)$.

Step 1: Label $x_{1}, y_{1}, x_{2}$, and $y_{2}$.


Step 2: Plug values into the slope formula.

$$
\begin{aligned}
& \text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \text { slope }=\frac{3-1}{1-0}
\end{aligned}
$$

Step 3: Simplify.

$$
\text { slope }=\frac{2}{1}=2
$$

25 . Find the slope of the line between $(1,3)$ and $(5,5)$.
26. Find the slope of the line between $(2,3)$ and $(9,7)$.

Example 2: Use the midpoint formula to find the midpoint of the segment below.
Step 1: Find the coordinates of the 2 endpoints

$$
(-4,1) \text { and }(4,3)
$$

Step 2: Label $x_{1}, y_{1}, x_{2}$, and $y_{2}$.



Step 3: Plug into midpoint formula. and simplify.

$$
\begin{aligned}
& \text { midpo int }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& \text { midpo int }=\left(\frac{(-4)+4}{2}, \frac{1+3}{2}\right) \\
& \text { midpo int }=\left(\frac{0}{2}, \frac{4}{2}\right)=(0,2)
\end{aligned}
$$

27. Find the midpoint of the segment with endpoints $(0,0)$ and $(4,2)$.
28. Find the midpoint of the segment with endpoints $(-3,-1)$ and $(3,3)$.

## Factoring <br> Methods: GCF, Sum/Product, Grouping

29. $3 x^{2}+x$
30. $x^{2}+7 x+10$
31. $x^{2}-9$
32. $2 x^{2}+10 x+12$
33. $2 x^{2}-11 x-6$
34. $16 x^{2}-25$
35. $3 x^{2}+10 x-25$
